Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 17, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491515

RESUMO

BACKGROUND: The complex and co-evolved interplay between plants and their microbiota is crucial for the health and fitness of the plant holobiont. However, the microbiota of the seeds is still relatively unexplored and no studies have been conducted with olive trees so far. In this study, we aimed to characterize the bacterial, fungal and archaeal communities present in seeds of ten olive genotypes growing in the same orchard through amplicon sequencing to test whether the olive genotype is a major driver in shaping the seed microbial community, and to identify the origin of the latter. Therefore, we have developed a methodology for obtaining samples from the olive seed's endosphere under sterile conditions. RESULTS: A diverse microbiota was uncovered in olive seeds, the plant genotype being an important factor influencing the structure and composition of the microbial communities. The most abundant bacterial phylum was Actinobacteria, accounting for an average relative abundance of 41%. At genus level, Streptomyces stood out because of its potential influence on community structure. Within the fungal community, Basidiomycota and Ascomycota were the most abundant phyla, including the genera Malassezia, Cladosporium, and Mycosphaerella. The shared microbiome was composed of four bacterial (Stenotrophomonas, Streptomyces, Promicromonospora and Acidipropionibacterium) and three fungal (Malassezia, Cladosporium and Mycosphaerella) genera. Furthermore, a comparison between findings obtained here and earlier results from the root endosphere of the same trees indicated that genera such as Streptomyces and Malassezia were present in both olive compartments. CONCLUSIONS: This study provides the first insights into the composition of the olive seed microbiota. The highly abundant fungal genus Malassezia and the bacterial genus Streptomyces reflect a unique signature of the olive seed microbiota. The genotype clearly shaped the composition of the seed's microbial community, although a shared microbiome was found. We identified genera that may translocate from the roots to the seeds, as they were present in both organs of the same trees. These findings set the stage for future research into potential vertical transmission of olive endophytes and the role of specific microbial taxa in seed germination, development, and seedling survival.

2.
Comput Struct Biotechnol J ; 21: 3575-3589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520283

RESUMO

Soil health and root-associated microbiome are interconnected factors involved in plant health. The use of manure amendment on agricultural fields exerts a direct benefit on soil nutrient content and water retention, among others. However, little is known about the impact of manure amendment on the root-associated microbiome, particularly in woody species. In this study, we aimed to evaluate the effects of ovine manure on the microbial communities of the olive rhizosphere and root endosphere. Two adjacent orchards subjected to conventional (CM) and organic (OM) management were selected. We used metabarcoding sequencing to assess the bacterial and fungal communities. Our results point out a clear effect of manure amendment on the microbial community. Fungal richness and diversity were increased in the rhizosphere. The fungal biomass in the rhizosphere was more than doubled, ranging from 1.72 × 106 ± 1.62 × 105 (CM) to 4.54 × 106 ± 8.07 × 105 (OM) copies of the 18 S rRNA gene g-1 soil. Soil nutrient content was also enhanced in the OM orchard. Specifically, oxidable organic matter, total nitrogen, nitrate, phosphorous, potassium and sulfate concentrations were significantly increased in the OM orchard. Moreover, we predicted a higher abundance of bacteria in OM with metabolic functions involved in pollutant degradation and defence against pathogens. Lastly, microbial co-occurrence network showed more positive interactions, complexity and shorter geodesic distance in the OM orchard. According to our results, manure amendment on olive orchards represents a promising tool for positively modulating the microbial community in direct contact with the plant.

3.
Environ Microbiol ; 25(9): 1747-1761, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37186411

RESUMO

Quercus pyrenaica is a woody species of high landscape value, however, its forests show an advanced state of degradation in the Iberian Peninsula. Afforestation typically has low success, thus, it is necessary to improve the fitness of oaks plantlets to be transplanted, for instance, by inoculating beneficial microorganisms. In adding microorganisms to ecosystems, there must be balanced efficacy with potential effects on native microbial communities. We addressed changes in diversity, richness, composition and co-occurrence networks of prokaryotic communities in the rhizosphere of inoculated and control trees outplanted to three different sites located in the Sierra Nevada National and Natural Park (Spain). After 18 months in wild conditions, we did not detect changes due to the inoculation in the richness, diversity and structure in none of the sites. However, we observed an increase in the complexity of the co-occurrence networks in two experimental areas. Modularization of the networks changed as a result of the inoculation, although the sense of the change depended on the site. Although it was impossible to unravel the effect of bacterial inoculation, our results highlighted that inoculation alters the association of rhizosphere bacteria without entailing other changes, so networks should be analysed prior to inoculating the plantlets.


Assuntos
Microbiota , Quercus , Rizosfera , Árvores , Florestas , Microbiologia do Solo
4.
Environ Microbiome ; 18(1): 21, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949520

RESUMO

BACKGROUND: Verticillium wilt of olive (VWO), caused by Verticillium dahliae Kleb, is one of the most threatening diseases affecting olive cultivation. An integrated disease management strategy is recommended for the effective control of VWO. Within this framework, the use of biological control agents (BCAs) is a sustainable and environmentally friendly approach. No studies are available on the impact that the introduction of BCAs has on the resident microbiota of olive roots. Pseudomonas simiae PICF7 and Paenibacillus polymyxa PIC73 are two BCAs effective against VWO. We examined the effects of the introduction of these BCAs on the structure, composition and co-occurrence networks of the olive (cv. Picual) root-associated microbial communities. The consequences of the subsequent inoculation with V. dahliae on BCA-treated plants were also assessed. RESULTS: Inoculation with any of the BCAs did not produce significant changes in the structure or the taxonomic composition of the 'Picual' root-associated microbiota. However, significant and distinctive alterations were observed in the topologies of the co-occurrence networks. The introduction of PIC73 provoked a diminution of positive interactions within the 'Picual' microbial community; instead, PICF7 inoculation increased the microbiota's compartmentalization. Upon pathogen inoculation, the network of PIC73-treated plants decreased the number of interactions and showed a switch of keystone species, including taxa belonging to minor abundant phyla (Chloroflexi and Planctomycetes). Conversely, the inoculation of V. dahliae in PICF7-treated plants significantly increased the complexity of the network and the number of links among their modules, suggestive of a more stable network. No changes in their keystone taxa were detected. CONCLUSION: The absence of significant modifications on the structure and composition of the 'Picual' belowground microbiota due to the introduction of the tested BCAs underlines the low/null environmental impact of these rhizobacteria. These findings may have important practical consequences regarding future field applications of these BCAs. Furthermore, each BCA altered the interactions among the components of the olive belowground microbiota in idiosyncratic ways (i.e. PIC73 strongly modified the number of positive relations in the 'Picual' microbiota whereas PICF7 mostly affected the network stability). These modifications may provide clues on the biocontrol strategies used by these BCAs.

5.
Data Brief ; 46: 108805, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36578531

RESUMO

The Mediterranean basin is drastically affected by intense and frequent droughts, which jeopardize the diversity and survival of its forest, for example, Pinus pinaster forests. The dynamics of the bacterial communities inhabiting the rhizosphere of Pinus pinaster and other plants from a pine dominated forest under contrasting hydric conditions was monitored. The forest was located in Sierra de Oria (southeast Spain), and it was mainly composed by P. pinaster, P. halepensis, woody shrub species and herbaceous plants. 18 trees visually belonging to P. pinaster located along the perimeter and across the forest were selected for the analysis. All the trees were separated at least 50 m each other. Although all of them belonged to P. pinaster morphologically according to visual identification, the genotyping of the roots confirmed that they corresponded to P. pinaster, P. halepensis, and other plant species different from genus Pinus, although in the last case it was not possible to identify the plant species. At a distance less than 50 cm from the trunk, the litter and topsoil were removed, and the soil closely attached to non-suberified roots (rhizosphere soil) was collected (depth of 5-25 cm). Sampling was carried out in two seasons with contrasting temperature and rainfall patterns: on July 18, 2017 (summer) and April 24, 2018 (spring). After rhizosphere soil DNA and RNA extraction (and cDNA synthesis), a metabarcoding approach was followed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene and its derived transcripts by Illumina MiSeq platform. Sequencing reads were bioinformatically processed; specifically, they were filtered, trimmed, clustered into ASV (Amplicon Sequence Variants), and taxonomically identified. As a result, a total of 1,123,209 and 1,089,359 quality sequences were obtained from DNA and RNA-derived libraries, which resulted in 5,241 and 5,231 ASVs, respectively. Total communities (DNA) were mainly dominated by phyla Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Bacteroidetes in summer and spring, while potentially active populations (RNA libraries) were rich in Proteobacteria, Acidobacteria, Candidate division WPS-1, Actinobacteria and Verrucomicrobia both in summer and spring. On the other hand, DNA libraries were mainly dominated by genera Sphingomonas and acidobacterial groups Gp4 and Gp6, while potentially active bacteria (RNA) were rich in acidobacterial Gp3, Gp4, Gp6 and Phenylobacterium, although their relative abundance depended on the considered season. This dataset can provide valuable information about bacterial candidates which could be used as bioindicators of drought conditions. In addition to shifts in the bacterial relative abundance due to seasonal changes, the ratio RNA-based cDNA:DNA could be calculated as proxy of the potential activity of bacterial taxa. Moreover, these data could aid in developing bioformulations based on microorganisms which could be resistant to desiccation and involved in the drought resistance mechanisms of the host plant.

7.
Sci Total Environ ; 832: 155007, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381249

RESUMO

Increasing temperatures along with severe droughts are factors that may jeopardize the survival of the forests in the Mediterranean basin. In this region, Pinus pinaster is a common conifer species, that has been used as a model species in evolutionary studies due to its adaptive response to changing environments. Although its drought tolerance mechanisms are already known, knowledge about the dynamics of its root microbiota is still scarce. We aimed to decipher the structural (bacterial abundance), compositional, functional and associative changes of the P. pinaster rhizosphere bacterial communities in spring and summer, at DNA and RNA level (environmental DNA, live and dead cells, and those synthesizing proteins). A fundamental aspect of root microbiome-based approaches is to guarantee the correct origin of the samples. Thus, we assessed the genotype of host needles and roots from which rhizosphere samples were obtained. For more than 50% of the selected trees, genotype discrepancies were found and in three cases the plant species could not be determined. Rhizosphere bacterial communities were homogeneous with respect to diversity and structural levels regardless of the host genotype in both seasons. Nonetheless, significant changes were seen in the taxonomic profiles depending on the season. Seasonal changes were also evident in the bacterial co-occurrence patterns, both in DNA and RNA libraries. While spring communities switched to more complex networks, summer populations resulted in more compartmentalized networks, suggesting that these communities were facing a disturbance. These results may mirror the future status of bacterial communities in a context of climate change. A keystone hub was ascribed to the genus Phenylobacterium in the functional network calculated for summer. Overall, it is important to validate the origin and identity of plant samples in any plant-microbiota study so that more reliable ecological analyses are performed.


Assuntos
Pinus , Rizosfera , Bactérias/genética , Secas , Genótipo , Pinus/genética , Raízes de Plantas/microbiologia , RNA , Microbiologia do Solo , Árvores/genética
8.
Front Microbiol ; 13: 809126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242117

RESUMO

The impact of the versatile biocontrol and plant-growth-promoting rhizobacteria Pseudomonas simiae PICF7 on the banana holobiont under controlled conditions was investigated. We examine the fate of this biological control agent (BCA) upon introduction in the soil, the effect on the banana root microbiota, and the influence on specific host genetic defense responses. While the presence of strain PICF7 significantly altered neither the composition nor the structure of the root microbiota, a significant shift in microbial community interactions through co-occurrence network analysis was observed. Despite the fact that PICF7 did not constitute a keystone, the topology of this network was significantly modified-the BCA being identified as a constituent of one of the main network modules in bacterized plants. Gene expression analysis showed the early suppression of several systemic acquired resistance and induced systemic resistance (ISR) markers. This outcome occurred at the time in which the highest relative abundance of PICF7 was detected. The absence of major and permanent changes on the banana holobiont upon PICF7 introduction poses advantages regarding the use of this beneficial rhizobacteria under field conditions. Indeed a BCA able to control the target pathogen while altering as little as possible the natural host-associated microbiome should be a requisite when developing effective bio-inoculants.

9.
Comput Struct Biotechnol J ; 19: 4777-4789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504670

RESUMO

The connection between olive genetic responses to environmental and agro-climatic conditions and the composition, structure and functioning of host-associated, belowground microbiota has never been studied under the holobiont conceptual framework. Two groups of cultivars growing under the same environmental, pedological and agronomic conditions, and showing highest (AH) and lowest (AL) Actinophytocola relative abundances, were earlier identified. We aimed now to: i) compare the root transcriptome profiles of these two groups harboring significantly different relative abundances in the above-mentioned bacterial genus; ii) examine their rhizosphere and root-endosphere microbiota co-occurrence networks; and iii) connect the root host transcriptome pattern to the composition of the root microbial communities by correlation and co-occurrence network analyses. Significant differences in olive gene expression were found between the two groups. Co-occurrence networks of the root endosphere microbiota were clearly different as well. Pearson's correlation analysis enabled a first portray of the interaction occurring between the root host transcriptome and the endophytic community. To further identify keystone operational taxonomic units (OTUs) and genes, subsequent co-occurrence network analysis showed significant interactions between 32 differentially expressed genes (DEGs) and 19 OTUs. Overall, negative correlation was detected between all upregulated genes in the AH group and all OTUs except of Actinophytocola. While two groups of olive cultivars grown under the same conditions showed significantly different microbial profiles, the most remarkable finding was to unveil a strong correlation between these profiles and the differential gene expression pattern of each group. In conclusion, this study shows a holistic view of the plant-microbiome communication.

10.
Sci Total Environ ; 789: 147975, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082203

RESUMO

RNA-based high-throughput sequencing is a valuable tool in the discernment of the implication of metabolically active bacteria during composting. In this study, "alperujo" composting was used as microbial model for the elucidation of structure-function relationships with physicochemical transformation of the organic matter. DNA and RNA, subsequently retrotranscribed into cDNA, were isolated at the mesophilic, thermophilic and maturation phases. 16S rRNA gene was amplified by quantitative PCR (qPCR) and Illumina MiSeq platform to assess bacterial abundance and diversity, respectively. The results showed that the abundance of active bacteria assessed by qPCR was maximum at thermophilic phase, which confirm it as the most active stage of the process. Concerning diversity, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the main phyla presented in composts. Concomitantly, three different behaviours were observed for bacterial dynamics: some genera decreased during the whole process meanwhile others proliferated only at thermophilic or maturation phase. Statistical correlation between physicochemical transformations of the organic matter and bacterial diversity revealed bacterial specialisation. This result indicated that specific groups of bacteria were only involved in the organic matter degradation during bio-oxidative phase or humification at maturation. Metabolic functions predictions confirmed that active bacteria were mainly involved in carbon (C) and nitrogen (N) cycles transformations, and pathogen reduction.


Assuntos
Compostagem , Olea , Bactérias/genética , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
11.
J Fungi (Basel) ; 7(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803181

RESUMO

This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).

12.
PLoS One ; 15(8): e0236796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780734

RESUMO

It is well-known that different plant species, and even plant varieties, promote different assemblages of the microbial communities associated with them. Here, we investigate how microbial communities (bacteria and fungi) undergo changes within the influence of woody plants (two olive cultivars, one tolerant and another susceptible to the soilborne fungal pathogen Verticillium dahliae, plus wild Holm oak) grown in the same soil but with different management (agricultural versus native). By the use of metabarcoding sequencing we determined that the native Holm oak trees rhizosphere bacterial communities were different from its bulk soil, with differences in some genera like Gp4, Gp6 and Solirubrobacter. Moreover, the agricultural management used in the olive orchard led to belowground microbiota differences with respect to the natural conditions both in bulk soils and rhizospheres. Indeed, Gemmatimonas and Fusarium were more abundant in olive orchard soils. However, agricultural management removed the differences in the microbial communities between the two olive cultivars, and these differences were minor respect to the olive bulk soil. According to our results, and at least under the agronomical conditions here examined, the composition and structure of the rhizospheric microbial communities do not seem to play a major role in olive tolerance to V. dahliae.


Assuntos
Microbiota/genética , Olea/microbiologia , Quercus/microbiologia , Microbiologia do Solo , DNA Fúngico/química , DNA Fúngico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/microbiologia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Análise de Sequência de DNA , Verticillium/genética , Verticillium/patogenicidade
13.
Front Microbiol ; 11: 1424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676064

RESUMO

The Queretaro semi-desert in central Mexico is the most southern extension of the Chihuahua desert. This semi-arid zone shelters a vast cactus diversity with many endemic species. Currently, two cacti species from this semi-desert namely, Echinocactus platyacanthus and Neobuxbaumia polylopha are under a threat to their survival. So far, there are no reports on the bacterial communities associated with these plants. In this study, we assessed the structure and diversity of the rhizospheric bacterial communities associated with Echinocactus platyacanthus and Neobuxbaumia polylopha growing in wild and cultivated conditions. Samples of E. platyacanthus were also approached with culture-based methods in search of isolates with plant growth promoting abilities. Metagenomic DNA was extracted from rhizospheric samples and used for Illumina sequencing of the 16S rRNA gene. α-diversity and amplicon sequence variant (ASV) richness were higher in both groups of E. platyacanthus samples. All samples accounted for 14 phyla, and the major 6 were common to all treatments. The dominant phyla in all four sample groups were Actinobacteria and Proteobacteria. Analysis at family and genus levels showed association patterns with the cultivated samples from both species grouping together, while the wild samples of each cactus species were grouping apart. High abundance values of Rubrobacteraceae (15.9-18.4%) were a characteristic feature of wild E. platyacanthus samples. In total, 2,227 ASVs were scored in all 12 rhizospheric samples where E. platyacanthus samples showed higher richness with 1,536 ASVs. Regarding the growing conditions, both groups of cultivated samples were also richer accounting for 743 and 615 ASVs for E. platyacanthus and N. polylopha, respectively. The isolates from E. platyacanthus rhizosphere were mainly assigned to Bacilli and Gammaproteobacteria. In total 35 strains were assayed for PGPR traits (IAA and siderophore production, phosphate solubilization, and fungal growth inhibition). Strains obtained from plants growing in the wild displayed better PGPR characteristics, stressing that naturally occurring wild plants are a source of bacteria with diverse metabolic activities, which can be very important players in the adaptation of cacti to their natural environments.

14.
Arch Microbiol ; 202(10): 2629-2642, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32710156

RESUMO

Here we analyze the microbial community of healthy and diseased tomato plants to evaluate its impact on plant health. The organisms found in all samples mainly belonged to 4 phyla: Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The Proteobacteria were the highest relative abundant within the endophytic communities of different plant organs of diseased tomato. Among endophytic bacteria of tomato, only a few taxa could be cultured. Here we showed that only a few taxa of bacteria inhabiting tomato plants could be cultured and that all plant organs have a highly diverse endophytic bacterial, whose activity might affect plant growth and development as well as health. The roots seem to be an important barrier for microbes and leaves appear to be the organs with the higher diversity which is incidentally related to plant health. Fruits also contain a complex bacterial community that appeared to be unaffected by foliar diseases such as gray leaf spot at least under the conditions studied.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Actinobacteria/fisiologia , Bactérias/classificação , Bacteroidetes/fisiologia , Endófitos/classificação , Firmicutes/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Proteobactérias/fisiologia
15.
Microbiome ; 8(1): 11, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007096

RESUMO

BACKGROUND: Verticillium wilt of olive (VWO) is caused by the soilborne fungal pathogen Verticillium dahliae. One of the best VWO management measures is the use of tolerant/resistant olive cultivars. Knowledge on the olive-associated microbiome and its potential relationship with tolerance to biotic constraints is almost null. The aims of this work are (1) to describe the structure, functionality, and co-occurrence interactions of the belowground (root endosphere and rhizosphere) microbial communities of two olive cultivars qualified as tolerant (Frantoio) and susceptible (Picual) to VWO, and (2) to assess whether these communities contribute to their differential disease susceptibility level. RESULTS: Minor differences in alpha and beta diversities of root-associated microbiota were detected between olive cultivars regardless of whether they were inoculated or not with the defoliating pathotype of V. dahliae. Nevertheless, significant differences were found in taxonomic composition of non-inoculated plants' communities, "Frantoio" showing a higher abundance of beneficial genera in contrast to "Picual" that exhibited major abundance of potential deleterious genera. Upon inoculation with V. dahliae, significant changes at taxonomic level were found mostly in Picual plants. Relevant topological alterations were observed in microbial communities' co-occurrence interactions after inoculation, both at structural and functional level, and in the positive/negative edges ratio. In the root endosphere, Frantoio communities switched to highly connected and low modularized networks, while Picual communities showed a sharply different behavior. In the rhizosphere, V. dahliae only irrupted in the microbial networks of Picual plants. CONCLUSIONS: The belowground microbial communities of the two olive cultivars are very similar and pathogen introduction did not provoke significant alterations in their structure and functionality. However, notable differences were found in their networks in response to the inoculation. This phenomenon was more evident in the root endosphere communities. Thus, a correlation between modifications in the microbial networks of this microhabitat and susceptibility/tolerance to a soilborne pathogen was found. Moreover, V. dahliae irruption in the Picual microbial networks suggests a stronger impact on the belowground microbial communities of this cultivar upon inoculation. Our results suggest that changes in the co-occurrence interactions may explain, at least partially, the differential VWO susceptibility of the tested olive cultivars. Video abstract.


Assuntos
Consórcios Microbianos , Olea/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Verticillium/patogenicidade , Olea/classificação , Olea/fisiologia , Rizosfera
16.
Sci Rep ; 9(1): 1695, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737434

RESUMO

Melojo oak (Quercus pyrenaica Willd.) is a key tree species of Mediterranean forests; however, these forests show an advanced stage of deterioration in the Iberian Peninsula. Plant-associated microorganisms play an essential role improving their host's fitness, hence, a better understanding of oak rhizospheric microbiome, especially of those active members, could be the first step towards microbiome-based approaches for oak-forest improvement. Here we reported, for the first time, the diversity of total (DNA-based) and potentially active (RNA-based) bacterial communities of different melojo-oak forest formations through pyrosequencing of 16S rRNA gene amplicons. We found that potentially active bacterial communities were as rich and diverse as total bacterial communities, but different in terms of relative abundance patterns in some of the studied areas. Both core microbiomes were dominated by a relatively small percentage of OTUs, most of which showed positive correlation between both libraries. However, the uncoupling between abundance (rDNA) and potential activity (rRNA) for some taxa suggests that the most abundant taxa are not always the most active, and that low-abundance OTUs may have a strong influence on oak's rhizospheric ecology. Thus, measurement of rRNA:rDNA ratio could be helpful in identifying major players for the development of bacterial bioinoculants.


Assuntos
Bactérias/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Quercus/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/isolamento & purificação , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , Rizosfera , Análise de Sequência de DNA/métodos , Microbiologia do Solo
17.
Sci Rep ; 9(1): 20423, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892747

RESUMO

The bacterial and fungal communities from the olive (Olea europaea L.) root systems have not yet been simultaneously studied. We show in this work that microbial communities from the olive root endosphere are less diverse than those from the rhizosphere. But more relevant was to unveil that olive belowground communities are mainly shaped by the genotype of the cultivar when growing under the same environmental, pedological and agronomic conditions. Furthermore, Actinophytocola, Streptomyces and Pseudonocardia are the most abundant bacterial genera in the olive root endosphere, Actinophytocola being the most prevalent genus by far. In contrast, Gp6, Gp4, Rhizobium and Sphingomonas are the main genera in the olive rhizosphere. Canalisporium, Aspergillus, Minimelanolocus and Macrophomina are the main fungal genera present in the olive root system. Interestingly enough, a large number of as yet unclassified fungal sequences (class level) were detected in the rhizosphere. From the belowground microbial profiles here reported, it can be concluded that the genus Actinophytocola may play an important role in olive adaptation to environmental stresses. Moreover, the huge unknown fungal diversity here uncovered suggests that fungi with important ecological function and biotechnological potential are yet to be identified.


Assuntos
Microbiota , Micobioma , Olea/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Bactérias , Fungos , Microbiologia do Solo
18.
Genome Announc ; 6(11)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545291

RESUMO

We report here the draft genome sequences of two Arthrobacter strains isolated from a holm oak forest affected by wildfire. Both strains were shown to act as plant growth promoters, with AFG20 being a member of the most abundant group found in this soil and AFG7.2 being the strain with the highest indole-3-acetic acid production level.

19.
Sci Rep ; 7(1): 6008, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729641

RESUMO

After a forest wildfire, the microbial communities have a transient alteration in their composition. The role of the soil microbial community in the recovery of an ecosystem following such an event remains poorly understood. Thus, it is necessary to understand the plant-microbe interactions that occur in burned soils. By high-throughput sequencing, we identified the main bacterial taxa of burnt holm-oak rhizosphere, then we obtained an isolate collection of the most abundant genus and its growth promoting activities were characterised. 16S rRNA amplicon sequencing showed that the genus Arthrobacter comprised more than 21% of the total community. 55 Arthrobacter strains were isolated and characterized using RAPDs and sequencing of the almost complete 16S rRNA gene. Our results indicate that isolated Arthrobacter strains present a very high genetic diversity, and they could play an important ecological role in interaction with the host plant by enhancing aerial growth. Most of the selected strains exhibited a great ability to degrade organic polymers in vitro as well as possibly presenting a direct mechanism for plant growth promotion. All the above data suggests that Arthrobacter can be considered as an excellent PGP rhizobacterium that may play an important role in the recovery of burned holm-oak forests.


Assuntos
Microbiota , Raízes de Plantas/microbiologia , Quercus , Rizosfera , Microbiologia do Solo , Incêndios Florestais , Arthrobacter/classificação , Arthrobacter/genética , Biodiversidade , Metagenoma , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética , Solo/química
20.
Front Plant Sci ; 7: 1016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524985

RESUMO

Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance) Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere of maize intercropped with bur clover, and Gp4, Subdivision3 genera incertae sedis of phylum Verrucomicrobia, Gp6 and Rhodoferax were the main genera in the rhizosphere of maize plants. Taken together, our results suggest that bur clover produces specific changes in rhizospheric bacterial diversity of amilaceous maize plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...